

Internet of Things and Cloud Computing
2014; 2(1): 1-5

Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/iotcc)

doi: 10.11648/j.iotcc.20140201.11

A method to increase the computing speed of 2 on 2
soccer robots by implementing distributed computation
in multi-processor architecture (experimental research)

Yahya Hassanzadeh-Nazarabadi
1
, Sanaz Taheri-Boshrooyeh

2
, Milad Bahrami

2
, Danial Bahrami

3

1Mobile Robots Department, Parse Lab of Robotics, Mashhad, Iran
2Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
3Semnan University, Semnan, IRAN

Email address:
ya_ha_na@ieee.org (Y. Hassanzadeh-Nazarabadi), staherib90@gmail.com (S. Taheri-Boshrooyeh),

milad.1821370@gmail.com (Milad Bahrami), danial70.bahrami@gmail.com (Danial Bahrami)

To cite this article:
Yahya Hassanzadeh-Nazarabadi, Sanaz Taheri-Boshrooyeh, Milad Bahrami, Danial Bahrami. A Method to Increase the Computing

Speed of 2 on 2 Soccer Robots by Implementing Distributed Computation in Multi-Processor Architecture (Experimental Research).

Internet of Things and Cloud Computing. Vol. 2, No. 1, 2014, pp. 1-5. doi: 10.11648/j.iotcc.20140201.11

Abstract: Due to the competitive nature of soccer robots operations, execution speed of functions in critical actions like

shooting, dribbling and positioning has an undeniable importance. In this paper the idea of implementing distributed

functions for multi-processor computing in a multi-agent environment and also dividing computational load of functions

among agents between teammates, is being presented for the first time. The practical implementation of this method

resulted in high speed execution of the critical actions functions. Given that so far in this area of expertise, no research has

been done, it is hoped that this technique can provide a practical approach.

Keywords: Bluetooth Connection, Queue Data Structure, AVR Micro Controller,

Intelligent Agent – Multi Processor Architecture, I2C Communication

1. Introduction

Intelligent soccer robot has the ability to target and

control the ball and playing a game with clear rules without

human intervention. The main objective of soccer robot

research is to design and implement a robot with the ability

to compete with human players. In order to achieve this

goal, different leagues such as humanoid robots, small and

medium size robots and single and multi-agent robots have

been created so far. The goal of the humanoid robots is to

maintain balance and do human-like movements. In small

size one, agent give orders to all other robots and manages

the game. However, the goal of medium size soccer robots

is individual processing and algorithm efficiency. 1-on-1

and 2-by-2 soccer robots are aimed at strengthening

individual skills rather than group skills to move through

within this. Single and multi-agents soccer robots that will

be discussed in this paper perform their missions by

operations such as positioning, identifying obstacles, goal

targeting and processing data. The difference between

multi-agent soccer robots (2-by-2) and single agents soccer

robots (1-on-1) is an extra goalkeeper protecting the gate

and cooperates with the other teammate in the necessary

circumstances. These circumstances will be explained in

more details later in this paper. A critical issue for each

agent is to analysis data of input sensors, making decisions

for the operation and coordinating with other teammates[1].

Due to the high computational load of the robots, response

speed will be decreased. Proposed solution is to divide the

decision making between two robots using intra-robot

connections so that while one robot is handling heavy

computations under a critical situation, it could share some

of it’s computations with the other robot, therefore overall

performance and speed will increase.

With this objective in mind, in this paper, in section 2 we

will describe the problem and discuss operations issues and

limitations of 2-by-2 soccer robots. Section 3 introduces

intelligent agents and multi-agent environments, section 4

will concludes the results of the pervious researches done in

the related area, then in section 5 we will solve the problem

of increasing the computing speed of 2-by-2 soccer robots,

2 Yahya Hassanzadeh-Nazarabadi et al.: A Method to Increase the Computing Speed of 2 on 2 Soccer Robots by Implementing

Distributed Computation in Multi-Processor Architecture (Experimental Research)

explain the implementation details and review the result.

Finally in section 6 we will conclude this experimental

research.

2. Description of Problem

In 2 by 2 soccer robots, each team consist two robots as

teammates, one goal keeper and one player. The defense

duty is shared by both of the players. In 2 by 2 soccer

robots the winner is the team with positive goal

difference[2]. However victory depends on computation

speed and precision of performing of the decisions

(precision of performing of the decisions are assumed

equal). Decrease in computation speed is result of the long

execution time of some of the critical functions. In this

section the standard rules of 2 by 2 soccer robot will be

discussed. These rules have been published by the

international robocup organization which are used in all

robocup competitions[3].

Figure 1. Play field of 1 on 1 soccer robots.

Field characteristics:

According to figure number 1, size of the play field is

183*122 cm. Around and at the back of the field are be

surrounded by 14 cm tall black walls.

Width of each gate is 60 cm, gates are be placed in the

center of the field widths. Height of each gate is 10 cm. A

bar is on top of each gate to prevent robots to enter inside

the gates. One of the gates is colored blue, while the other

one is yellow. Outside of the gates are colored black [2].

Play field should offsets the effect of external infrared

light and earth’s magnetic field (optimal situation is not

guaranteed), therefore the robots should be in a way that

their different axles take high effect from infrared light to

be able to detect the ball and take action to catch it[3].

Robot positions itself and find the ball by using

ultrasonic and infrared sensors. There is an infrared

transmitter with known frequency inside of the ball which

is used by robots to find it [3].

The main problem in this paper is the heavy computation

load on the robots after finding and catching the ball. This

computation load occurs because of the calling and

execution of critical operational functions like passing,

shooting, dribbling and so on. Soccer robots can divide

their computations load between other teammates, then

when computations are done each agent combines the

results and makes the necessary decision.

3. Introduction to Intelligent Agents a

and Multi-Agent Environment

In artificial intelligence, an intelligent agent is an

autonomous unit that uses sensors in order to understand

the environment. This agent may also have actuators to pick,

drop and move the objects. A multi-agent system consists

of some number of intelligent agents that are related

together. All the agents operate independently of each other.

Such this system is used to solve problems that are hard or

even impossible for a single agent system or an integrated

system to solve[4].

In this problem the intelligent agent is the soccer robot

and the multi-agent environment consists of two intelligent

robots which are connected together by a wireless

communication.

4. Studies of Previous Researches

By conducting a search on the IEEE article databases, it

was concluded that so far no research has been explicitly

done on the distributing computations of soccer robots. The

reason for this anomaly is that the present studies on soccer

robots are focused on optimizing the individual skills. Also

there is no need for distributed computing in single-agent

soccer robots, because in single agent environments there is

only one agent. Of course, so many researches have been

proposed in distributed computing in single agent systems.

Most of these studies have been done at lower levels of the

distribution, So that most of the researches focus on

distributing computation between CPU cores of a single

agent system or ultimately at the highest level, on

distributing computation on different processors in a multi-

processor system. But rarely there have been any research

on distributing computations among different agents of a

multi-agent system with aim to speed up the calculations or

at least one that has been officially released.

As it was discussed in abstract and introduction of this

article, the purpose of this research is accelerating the

computations by implementing distributed computing in a

multi-agent system. To this day, such distributions are often

conducted with the following objectives:

� Positioning and path finding:

In mobile robots such as firefighter robots, path finder

robots and rescue robots, being aware of other agents

positions and correct understanding of the

environment have always been a critical issue. With

this aim in mind, there have been many studies about

information distribution to improve the agents

understanding of the environment and other agent’s

position. These studies are mostly focused on

distribution of information and almost are never on

Internet of Things and Cloud Computing 2014; 2(1): 1-5 3

distribution of computation, also aims of these studies

have been based more on improving the awareness of

agents, and they do not emphasis on computational

speed [5]

� Task distribution in group operations:

In multi-agent robots such as cleaner robots that are

able to operate in groups, information distribution is

done with the goal of dividing the environment into

several parts and doing part of tasks assigned to that

part [6]. For example, the cleaner robots can divide the

house into several parts and clean each part with one

robot. Therefore, the information exchanged between

robots will be position’s and mission’s data [7]. For

example, set the exact boundaries of each region,

starting and finishing in one area and so on.

As mentioned at the beginning of this part, the major

studies published on the context of distribution in multi-agent

environment are about information distribution and task

distribution. Moreover, no particular research about

distribution of computation in multi-agent environment with

the aim to increase the computation speed has been done.

5. Solution

In this solution operational functions are divided into two

default categories, basic and advance functions.

Basic functions use less computation gain and are

executed in the minimum number of clock pulse. They

include the most basic calculations and commands such as

operations are needed for passing, shooting, positioning,

moving, dribbling and catching the ball. Basic functions

can be transferred from one robot to another to be

processed. These functions will not be computed by in a

distributed manner. It means that it is only possible to run

them in one processor. According to the agreement between

robots, it would not be possible for a basic function to be

divided into several smaller functions and be distributed

across a network of several robots.

In contrast to the basic functions, advance functions will

include higher level of computations and algorithms. These

functions may consist some basic functions either. Due to

the heavy nature of their processing load, Advance

functions could be divided into several smaller parts and be

distributed across a networks of robots. These functions

could be consider as advance dribbling, catching the ball

and blocking.

Advance functions can perform the operations despite

the coordinator changes. It means that these functions could

be transferred either completely or partially to another

platform in order to the execution. By default each robot

has two processors. As is shown in figure number 2,

processors are named as processor 1 and processor 2.

Processor 2 is the robots main processor which has the task

of scheduling and performing the functions of the robot.

The main operations of robot (including its operating

systems execution) will be run on this processor. In this

experiment, we choose ATMega 32 as the processor 1 and

2. However, In the experiment, there was not any kind of

special operating systems. Sample codes was ran using

Codevision AVR.

Figure 2. Connection between robots processors and Bluetooth connection.

As is shown in figure 2, processor 1 and 2 are connected

together using I2C communication. Processor 2 and the

other robots are connected to each other using Bluetooth

connection. All the communications between the two robots

are via this Bluetooth connection.

Before the computing, each robot determines if the

function is advance or basic. If it is an advance function it

is distributable. First the basic functions will be recognize

by the processor. Then, Basic functions will be put in a

queue in order due to maintain some priority. We will refer

to this queue as the work queue.

Afterward processor 2 will check the status of itself and

other processors by sending some request due to ask them

giving ACK. After receiving the ACK which shows that the

processor is not busy right now, Processor 2 will send a

function to whichever one that is not busy.

 The robot also stores list of its tasks that it has to do in a

queue will refer it as the task queue. If both processors of

robot be busy and at least one of the processors be involve

in a task that still a function of it be in the task queue, it will

select the function in the task queue and send it to the other

robot. In the other word, due to deadlock prevention,

processor 2 sometimes makes an exception and changes the

priority of the functions in the work queue according to the

status of task queue.

The other robot receives the function and adds it in its

work queue. It also adds the task of the function into its task

queue. When a function becomes the head of a queue, robot

(processor 2) will pop it up and computes and executes the

function and send the results back to the other transmitter

robot.

For example, suppose the robot is in a one on one

position with the opponent goalkeeper. One on one is an

advance function including three basic functions, move,

positioning and kick. In this situation one on one function

will be in task queue and the three other functions will be in

work queue. After processor 1 and 2 of player robot are

engaged in processing, it will send the third function (Here

for example kick) to the it’s teammate (goalkeeper)’s

second processor. Processor 2 of the goalkeeper will decide

about execution turn and place (processor 1 or 2). In this

example the kick function happens only if the goalkeeper

confirms it. Due to the long distance between ball and

goalkeeper in a strike situation, it cannot see the ball, so it

doesn’t perform the defend task and would be in the idle

4 Yahya Hassanzadeh-Nazarabadi et al.: A Method to Increase the Computing Speed of 2 on 2 Soccer Robots by Implementing

Distributed Computation in Multi-Processor Architecture (Experimental Research)

mode until the next ball observation. Therefore, at this

point, the goalkeeper has a low computation load and can

accept and compute the receiving functions.

To calculate the speed improvment between the

distributed situation and single processor situation several

experiment was conducted in radio silence. Radio silence

refers to a situation that there would be no connection

between robots, both robots would operate as a blind single

system who couldn’t observe it’s teammate except via it’s

sensors, but even in that situation, robot couldn’t make

connection to it’s teammate. Because of radio silence

robots weren’t able to send functions to one another. Also,

in order to prevent the inter-robot communication and

performing the functions in the distributed manner (even in

a sigle robot) processor 1 of robots was disabled.

 By using tic() and toc() functions at the start and the end

of advance functions their runtime was calculated. This

experiment was repeated twenty times. Each time robots

played a five minutes game. Afterwards radio silence was

aborted. Connection between robots was established and

also processor 1 of robots was activated again. Experiment

was repeated again with the same length and frequently in

the distributed manner and advance functions run time was

calculated. Outcome was that multiprocessor distributed

computing in a multi agent environment speeded up one on

one function by 7.9 times, advance dribble function by 8.4

times, and advance catch the ball function by 3.3 times.

The disadvantages of this method are revealed when the

receiver robot processors are both busy. It will execute the

sent function with delay or even reject it if its queues are

full. This situation can even lead to increase in the advance

functions runtime when compared to single processor

systems. We came to the conclusion that this situation only

occurs during the defense time. To avoid this situation,

functions related to defense were no longer considered

advance functions and were processed only in single

processor mode. Future research of the authors of this

article will be to solve this problem. Also, this method will

suffers from the single point of failure and by somehow

even deadlock. Consider a situation in which one robot sent

some function to the other one and wait to get the results. If

this situation happens a blocking manner, the sender has to

block to wait, until receiving some results from the other

one. At this moment, if the receiver falls down or faces

some problems, the sender will be in a situation such as a

deadlock, freezing and waiting for ever. This situation

could be improved by using non-blocking approach or

using a time out. Waiting for a fix amount of time, then

checking the connection, resend the query or do it by itself

would be such solutions to this problem.

It would be clear that this method, by itself, is deadlock

free, since an advance function is always a major action

which only would be depended on basic functions. Since no

basic function couldn’t distribute between several processors,

no advance function would be waiting for the other one.

6. Software Implementation

To exchange computations between two robots we used

predefined functions, func() and result(). The func()

function is responsible for transferring computations of a

basic function to the another robot. The func() is defined as

follows:

void func (name, ID, parameter1 = 0, parameter2= 0,

parameter3= 0)

The first argument of this function is the basic function

name that one robot wants to send to another one. Sender

ID is the second argument. Sender ID should be a unique

ID representing the transmitter robot. It could be a string,

binary code, dynamic code or something like this. Third to

fifth arguments are the basic function input arguments.

func() function after receiving the input parameters and

packing them sends them to the other robots.

As was mentioned before, each robot should has a unique

ID. This is due to network security and prevents interfering

interaction between an outsider and the robots and engaging

the processors with worthless information. Obviously IDs

are completely confidential between teammates. Due to

prevent the tapping into the communication between two

teammates in order to hacking the robots, overflowing them

with some dummy calculation or even make them doing

something against their team(like as own goal), a list of per

assigned random ID used for this communication. These

random ID are pairs, such as (ID1,ID2). Each pair could

only one time be used. Both robots know all the pairs.

When a robot wants to use the func() in order to send a

basic function to the other teammate, It selects one of the

unused ID pairs, and use the ID1 part in the func() function.

When the other robot receives the request, it first checks the

ID1 and search that could it find ID1 in an unused pair? if

“yes” then it would use the ID2 of that pair as it’s ID for

this transaction. If it couldn’t find that ID1, It will simply

just ignore the message as a spam.

When a robot receives the Computational data, it will

call the related basic function then the basic function will

perform the computations. Afterwards the receiver robot

will sent the results of the basic functions to the result ()

function. This function packs the data and returns it to the

sender robot. Structure of the result () function is exactly

like the func() function, but this function only has the three

first arguments of the func() function. First and second

arguments are the basic function name and the robots name.

The third argument is the result of the basic function. When

a robot wants to send the packed data of func() function, it

will send the //func string to the other robot before sending

the actual data. This string will tell the other robot that what

it is about to receive is a function for computation and it

should send back the result of it. Receiver robot will send

the //result string to the other robot when it wants to send

back the result. This string will tell the other robot that it is

about to receive the result of computations.

Internet of Things and Cloud Computing 2014; 2(1): 1-5 5

7. Conclusion

In this paper, first we introduced 2 on 2 soccer robots,

their tasks and missions. The importance of speed in the

calculation of the robot were discussed, afterwards we

introduced dividing the functions computations by using

distributed implementation of multi-processor computing.

Conditions, requirements, and implementation details were

discussed.

Generally, this method is on average of 5 to 6 times

faster than single processor mode, which until now has

been unprecedented. The main disadvantage is

the inefficiency when both robots being involved in a high

computational load. While implementing this method, it

was found that this condition occurs when the team is

defending. Defense function was no longer considered as

an advance function and was processed only in single

processor mode. It is hoped that in future research this

particular case can be executed in multi-processor

architecture as well.

References

[1] Hassanzadeh Nazarabadi Y, Saghlatoon H, Sharif Shazileh
A., "A method to create the most accurate goal targeting in 1
on 1 soccer robots", in 5th international conference on the
Evaluation of Novel Approaches to Software Engineering,
Athens, Greece Greece, 2010.

[2] Robocup Organization, "Jounior Soccer Robots Rules",
Robocup, Mexico City, Mexico,2012

[3] Iranian Robocup Organization, "Jounior Soccer Robots
Rules", Robocup Iran Open, Tehran, Iran, 2012

[4] Russell S, Norving P, Artificial intelligence: A Modern
Approach, by Prentice Hall, 3rd edition, 2002

[5] de Melo, L.F.D.J., A.E. ; Lopes, G.M.G. ; Rosario, J.M. ,
Mobile robots and wheelchairs control navigation design
using virtual simulator tools, in Industrial Electronics (ISIE),
2012 IEEE International Symposium on 2012, IEEE:
Hangzhou, China.

[6] Guruprasad, K. R. D., P. (2012). Distributed Voronoi
partitioning for multi-robot systems with limited range
sensors. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on Vilamoura, Algarve
[Portugal], IEEE: 3546- 3552.

[7] Pavone, M. A., A. ; Frazzoli, E. ; Bullo, F. (2011).
"Distributed Algorithms for Environment Partitioning in
Mobile Robotic Networks." Automatic Control, IEEE
Transactions on 56(8): 1834- 1848.

