

Internet of Things and Cloud Computing
2019; 7(1): 25-30

http://www.sciencepublishinggroup.com/j/iotcc

doi: 10.11648/j.iotcc.20190701.14

ISSN: 2376-7715 (Print); ISSN: 2376-7731 (Online)

Modifying Broker Policy for Better Distribution of the Load
Over Geo-distributed Datacenters

Louai Sheikhani, Weichao Ding, Jonathan Talwana, Chunhua Gu
*

School of Information Science and Engineering/East China University of Science and Technology, Shanghai, China

Email address:

*Corresponding author

To cite this article:
Louai Sheikhani, Weichao Ding, Jonathan Talwana, Chunhua Gu. Modifying Broker Policy for Better Distribution of the Load Over

Geo-distributed Datacenters. Internet of Things and Cloud Computing. Vol. 7, No. 1, 2019, pp. 25-30. doi: 10.11648/j.iotcc.20190701.14

Received: March 14, 2019; Accepted: June 11, 2019; Published: June 15, 2019

Abstract: As an increasing number of businesses move toward Cloud based services, issues such as reduce response time,

optimize cost, and load balance over data centers are important factor that need to be studied. Selecting the suitable data center

to handle the user request is affecting those factors directly. The Broker policy determines which data center should service the

request from each user base; so choosing appropriate policy can improve the performance noticeably. One of the benchmarks

policies is service proximity-based that routing the request to the data center, which has lowest network latency or minimum

transmission delay from a user base. If there are more than one data centers in a region in close proximity, then one of the data

centers is selected at random to service the incoming request. However, other factors such as cost, workload, number of virtual

machines, processing time etc., are not taken into consideration. Randomly selected data center gives undesirable results in

terms of response time, data processing time, cost, and other parameters. this work propose modifying that policy by applying

new schedule algorithm that control the load balance. the results showed that the using of this algorithm instead of the random

selection would improve the distribution of the workload over the available datacenters noticeably.

Keywords: Cloud Computing, Datacenter Selection, Broker Policy; Min-min Scheduling Algorithm, Load Balance

1. Introduction

Cloud computing represents a new way to deploy

computing technology to give users the ability to access,

work on, share, and store information using the Internet. The

cloud itself is a network of data centers, each composed of

many thousands of computers working together that can

perform the functions of software on a personal or business

computer by providing users access to powerful applications,

platforms, and services delivered over the Internet.

Data center is the main resource of the cloud that holds the

computing and storage server with number of host machine.

The main aim of data centers is to maximize the utilization of

computing resources such as storage, CPUs, and network

bandwidth as service-by-service providers at less cost. The

optimization models aims to optimize both resource centric

such as utilization, availability, reliability and user centric

like response time, budget spent fairness.

With the increase and rapid usage of the cloud computing,

it’s become very important to pay attention of the

characteristics of data center and it’s load. Choosing the

appropriate data center to handle the user request is Broker

policy responsibility, service proximity-based policy is a

benchmarks policy, in scenario that include more than one

data center in the same region (geographical region), the

Service Proximity Based send the user request randomly to

one of these data center.

The random selection of the data center is not a good

policy because it sending the user request to the data center

without any consideration of the data size or more

importantly the data center status which may lead to overload

the data center while data centers in better status to handle

the user request.

2. Realted Work

Selecting the Data center that can handle the user request

26 Louai Sheikhani et al.: Modifying Broker Policy for Better Distribution of the Load Over Geo-distributed Datacenters

is the main challenge to any broker policy, because during

choosing the proper data center, many factors should be

taking in consideration such as time, cost and the load

distribution over the available data centers in the cloud

system. The Proximity-based routing selects the closest

region depending upon the least network latency and from

that region it selects the data center randomly. However, this

policy has many limitations that affect the response time and

may lead to overwhelm a certain data center.

We notice variations of service broker policy gives better

performance than existing service proximity based policy.

Chudasama et al. (2010) presents an enhanced

proximity-based routing policy that avoids the direct

selection of nearest data center [1]. If more than one data

center is in the same region, then the data center having less

cost will be selected. Ram Prasad et al. have studied divisible

load scheduling theory in cloud computing [2]. Kumar

Nishant et al. proposed Ant colony optimization to improve

the load balance [3]. In Jasmin James et al. have proposed a

better allocation policy called weighted active monitoring

load balancing by assigning weights to each VM [4]. Soumya

Ray et al. have identified qualitative components for

simulation in cloud environment and then based on these

components; he has explained execution analysis of load

balancing algorithms [5]. Ajith Singh. N et al. have suggested

semi-distributed load balancing solution in cloud-based

infrastructure [6]. Authors have demonstrated efficient load

balancing in cloud computing using Fuzzy logic [7]. H.

Mehta et al. have formulated a new content aware load

balancing policy named as workload and client aware policy

(WCAP). It uses a unique and special property called UPS

that defines the requests as well as computing nodes. USP

helps the scheduler to decide the best suitable node for the

processing the requests [8]. Y. Lua et al. have explained a

Join Idle Queue load balancing algorithm for dynamically

scalable web services which provides large scale load

balancing with distributed dispatchers by, first load balancing

idle processors across dispatchers for the availability of idle

processors at each dispatcher and then, assigning jobs to

processors to reduce average queue length at each processor

[9]. J. Hu et al. have investigated the problem of scheduling

on load balancing on VM resources that uses historical data

and current state of the system [10]. T. S. Wang et al. have

formulated a two-phase scheduling algorithm which

combines OLB (Opportunistic Load Balancing) and LBMM

(Load Balance Min-Min) scheduling algorithms to utilize

better executing efficiency and maintain the load balancing

of the system [11].

3. Problem Definition

In cloud, from user’s end, the important factors are cost

optimization and provider that provides utility to the user’s

need. Thus routing of user’s request is a very important

aspect in cloud to understand how the user request handle,

then we can defined the problem that arise from applying

certain policy that route the request. Figure 1 shows the

routing of users’ requests.

Internet Cloudlet is created by User Base with appropriate

parameters such as application ID and name of User Base

(for routing back the RESPONSE). REQUEST is sent to the

Internet with zero delay. Internet requests service broker to

select an appropriate data center depending on the Service

broker policy used. Once the Internet receives the

information about which data center is to be used, Internet

sends the request to that data center after adding appropriate

network delay associated with that request. Depending on the

load balancing policy, the data center controller routes the

request to suitable virtual machine for processing. After

processing the REQUEST, RESPONSE is sent to the Internet

by selected data center. Then Internet adds network delay to

the RESPONSE and sends it to User Base using the

originator field in the Cloudlet information.

From the routing of the user requests it is quite evitable

that many of the issues arise while:

Selecting the appropriate data center: And this is the

responsibility of the broker policy, while having multiple

polices have major effect on the performance. Choosing

appropriate data center by applying appropriate broker policy

is an important step toward providing better performance

specially in terms of distributing the load over available

datacenters. Presenting appropriate broker algorithm is the

work of research.

Figure 1. Routing of the user request.

Selecting appropriate VM: After selecting the data center

it’s important to select appropriate VM, this selection will

affect directly the load balance within the data center. Various

load-balancing techniques are present and proposed to

enhance the cloud performance.

The problems may arise from applying some broker policy

that may route all the requests to only one data center. As a

result, only one data center is highly loaded and others are

not. The situation may arise that all the requests may go to

only one data center. This scenario may happened if the used

policy was proximity based policy that route the user request

to the closet data center, but if there are more than one Data

center in the same region, the request directed to a random

data center.

 Internet of Things and Cloud Computing 2019; 7(1): 25-30 27

3.1. Proximity Based Policy

In order to explore the limitation of this algorithm the

following steps present how this algorthim works, the

following steps show how Service Proximity Based handle the

user request [12]:

1) Service Proximity Service Broker maintains an index

table of all Data Centers indexed by their region.

2) When the user request is received the Service Proximity

Service broker retrieves the sender geographical region

and queries for the region proximity list for that region

from the Internet Characteristics.

3) The broker then route the sender request to the first

earliest/highest region in the proximity list. If more

than one data center is located in a region, one is

selected randomly.

3.2. Service Proximity Based Drawbacks

The main problem with service proximity-based routing is

the random selection of data center when there are more than

one data centers present in a particular region with low

latency; the results are different even though configurations

are kept same. In addition, there is a high probability that the

resources that are present are not utilized to their deliverable

capability. Also it is possible that the selected data center will

increase the response time or might have higher workload or

may be of greater cost as compared to those available in

same region.

The aim of this study is to show that using a proper

scheduling algorithm can guarntee better load distribution

over the datacenters in the cloud.

4. Proposed Solution

Figure 2. System architecture.

In previous study [13] we showed that using mim-min

scheduling algorithm instead of random selection would

improve the response time noticeably, we will use the same

solution to prove that our proposed model not only affect the

response time but also can control the load distribution over

the whole cloud system, The target system (as shown in Figure

2) in this study is cloud provider that it consist of multiple

geo-distributed data centers, those data centers are connected

to the users upon the proximity broker, this broker policy is

responsible of direct the user request to the data center, this

policy route the request randomly to the closet data center.

However, if there is more than one data center in the same

geographical region, this policy lead to poor results in term of

response time and load over available data centers. So the aim

of the proposed solution is to remove this random selection by

applying schedule algorithm that can distribute the load over

the available data centers in the given region, the proposed

min-min based algorithm to improve the current proximity

policy.

4.1. Workflow of the Proposed Solution

Our proposed model work according to the following

phases:

Phase 1: First computes the completion time of every task

on each machine and then for every task select the machine

that processes the tasks in minimum possible time. Phase 2:

Among all the tasks in Meta task the task with minimum

completion time is selected and is assigned to machine on

which minimum execution time is expected. The task is

removed from the list of Meta Task and the procedure

continues until Meta Task list is empty.

Phase 2: Among all the tasks in Meta task the task with

minimum completion time is selected and is assigned to

machine on which minimum execution time is expected. The

task is removed from the list of Meta Task and the procedure

continues until Meta Task list is empty.

4.2. Proposed Algorithm Description

The scheduling algorithm takes three kinds of inputs:

1) The task set: which contain the tasks need to be

scheduling over the data center (s) in the region that the

broker responsible of.

2) The data center (s): which include the all data centers

locate in a specific region.

3) Execute Time Matrix (ETM): the execute time matrix

which is a matrix of M×N indicate the execution time of

M types of tasks running on N types of DCs, for

example the entry eij in E indicate the required

execution time of task type when running on DC type j.

Algorithm 1 presents the detailed step to perform the

min-min scheduling approach. finish time can not be

calculated before the task executed but can just calculate the

expected finish time depending on the executable length (MI)

and the corresponding server processor speed so once this

value is optaind we calculate the expected finish time as

following:

1) The task arrives in a form of Internet cloudlet that the  

size of the task defined by its Executable instruction  

length (MI) and the size (MB).

2) The recourses (DCs) are defined by its processing speed

 (MIPS) and bandwidth (Mbps).

3) Assuming having a set of n tasks (T1, T2, T3.... Tn)  

28 Louai Sheikhani et al.: Modifying Broker Policy for Better Distribution of the Load Over Geo-distributed Datacenters

needed to be scheduling onto m available resources (R1,

R2, R3.... Rm) to calculate the expected time to process

the task on each of the resources using equation 1:

 Ctij = Etij + rtj (1)

Where Ctji is expected running time of task i on resource j,

and rtj indicate the ready time of resource Rj and Etij represents

the execution time of task Ti on resource Rj.

4) So each entity of the ETM matrix is computed as that

equation then the algorithm choose the entity with min

value, and according to that value assign it to the right

data center

Algorithm 1. The proposed scheduling algorithm.
Input: set of tasks, m data centers, ETM matrix.

Output: the schedule plan

Initiate the task set P.

While there are tasks not assigned do

 Update task set P.

 For i:task vi do

 Pull all Data centers status.

 Get the earliest resource available time.

 Find the Datacenter Dmin(vi) giving the earliest finish time of vi.

 End For

 Find the task-Data center pair(vk,Dmin(vk)) with the earliest finish time.

 Assign task vk to cloud Dmin(vk).

 Remove vk from P.

 Update the task set P

End While

5. Evaluations and Analysis

In a real-time environment, the effect of different factors on

cloud environments is difficult to determine, costly to perform

and risky to apply. For this reason, various simulation tools are

used to model and analyze cloud computing environment and

applications, graphically analyzing the results before the

actual deployment of clouds. This section will present the

simulation configurations that been used to evaluate service

proximity based routing algorithm, with the proposed

algorithm using Cloud Analyst [14] tool, and then the

simulation results will be presented for those two algorithms

in order to compare.

To explore the proposed algorithm ability we perform the

simulation using 2, 3 DCs respectively, then a comparsaion

between the proposed policy’s results and the proximity based

results will be done.

5.1. Load Evaluation Metrics

To show the efficiency of the proposed algorithm

comparing to proximity-based in term of load balancing Load

balance metrics are used. Load balance metrics characterize

how unevenly work is distributed, which provide a detailed

picture of load distribution that can indicate whether a

distribution has a few highly loaded outliers or many slightly

imbalanced datacenters The percent imbalance metric, λ

(presented in equation 2), is most commonly used:

� = �����
�� − 1� × 	100% (2)

Where Lmax is the maximum load on any datacenter and � is

the mean load over all datacenters. This metric measures the

performance lost to imbalanced load or, conversely, the

performance that could be reclaimed by balancing the load.

Percent imbalance measures the severity of load imbalance.

Another common statistical moments, standard deviation σ,

skewness g, where n is the number of datacenters and Li is the

load on the i
th

 datacenter. Those two metrics are

demonstrated in equation 3 and equation 4

� = ��
�∑ (�� − ��)�����

�
 (3)

� = �∑ (���� − 1)�����
� 	 (4)

The bigger the σ of load balancing is, the more unbalanced

the load will be. While Skewness g is the measure of

unevenness resource utilization of a server, the higher

Skewness means that relatively few processes have higher

than average load; a normal distribution of load implies

Skewness of 0.

5.2. Experiments Configuration

User Base configuration: The user base models a group of

users that is considered to be single unit in the simulation, the

user base is responsible for generating the traffic in the

simulation. The user base represents a single user instead of a

group of users, but ideally user base should be represents a

large number of users for the efficiency of simulation. Since

the scope is to compare the new policy with the existing

proximity policy we have to create users that belong to same

geographical region. Table 1 shows the user base

configurations.

Table 1. User base configuration.

Name Request per user Data size per request Peak hour start Peak hour end Average peak users
Average off peak

user

UB1 60 100 3 9 4000 400

UB2 80 100 2 7 3000 300

UB3 100 120 3 7 5000 500

UB4 40 140 2 9 3000 300

Datacenter configurations: Datacenter is responsible of

manage the data activities and routs the requests that is

received by the user to the VM depending of the applied policy,

We can ignore some parameters like the cost/VM (USD/h) and

the data transfer cost (USD/GB) because our scope is not

related to the, the most important parameters is the DC MIPS

 Internet of Things and Cloud Computing 2019; 7(1): 25-30 29

and the bandwidth because these two parameters are related

directly to our policy and the min-min algorithm use them to

compute the expected finish time for given task, another thing

should be clear in the simulation is that the DCs better to be in

the same region because it’s our scope. the simulation

performed among 2, 3, 5 and 10 DCs; all those DCs have the

same configurations represented in Table 2.

Table 2. Datacenters configurations.

Datacenter Parameters Value

Region 0

Speed (MIPS) 5000

Number of cores 2

Number of VMs 5

Image size 10000

Memory 512

Bandwidth 1000

User Grouping Factor in User Base 10

Request Grouping Factor 10

Executable instruction length/request 500

Simulation Duration 24 Hours

VM Image Size 10000

VM Memory 512 Mb

VM Bandwidth 1000

5.3. Results and Analysis

Figure 3. The imbalance percent.

After setting the simulation environment parameters, the

results and the discussion are detailed in this section. Three

performance metrics: imbalance percent, standard deviation

and Skewness are introduced to evaluate the proposed policy

compared with the proximity based.

Imbalance percent: this metric is used to measure the

performance that lost during processing the user request the

results shows that using the min-min algorithm reduce the lost

performance by lower the value to 33% comparing to 128%

using the original proximity based policy in 2 DCs scenario,

and also in 3 DCs case the value of imbalance still lower than

the proximity based, this improvements are shown in the

Figure 3.

Standard deviation and Skewness: the bigger value of the

standard deviation reflect more unbalance load over the

system, the results show that our proposed solution give more

balanced load over the datacenters in both two and three

datacenters system. While Skewness is the measure of

unevenness resource utilization of a server, the min-min

algorithm gives a Skewness value closer to 0 than the

proximity based, which mean more normal distribution of

load over the system, the results of the standard deviation and

Skewenss are presented in Figure 4 and Figure 5 respectively.

Figure 4. Standard deviation.

Figure 5. Skewness.

5.4. Discussion

The results show a major improvement over three important

metrics: 1) The imbalance percent; 2) standard deviation 3)

Skewenss.

The result of the measurements (in two datacenters or three

datacenters scenarios) demonstrates that our proposed model

have the advantage over Proximity-based model in

distributing the balance over the datacenters, all the metrics

that been used give better values in our model, for example our

model minimize the Skewness comparing to Proximity-based

model, which indicate less unevenness resource utilization,

our Skewness is closer to 0 than Proximity-based, in other

30 Louai Sheikhani et al.: Modifying Broker Policy for Better Distribution of the Load Over Geo-distributed Datacenters

word, closer to normal distribution. Other important metric

value is percent imbalance is better in our model since it’s

noticeably less than Proximity-based (33% to 128%). This

results were expected since the random selection of data

center in the proximity based policy is raising the chances of

overwork one of the available datacenters because this random

selection is done without considering the status and

characterization of the datacenters in the system.

6. Conclusion

In this study we showed that modifying the broker policy by

using the min-min scheduling algorithm which that been

proposed in previous work to improve the response time, is

also affect the distribution of work load over the datacenters

geo- distributed cloud systems comparing to the proximity

based. We have used three common metrics to evaluate the

improvement in distribution of load over the cloud, the results

prove that our proposed model can noticeably give better

distribution of the work load since it choose the datacenter to

handle the coming requests by considering the status of the

datacenter instead if the random selection in proximity based

policy, this random selection is the major draw in the

proximity based policy that can lead to overwhelming one

datacenter and unevenness in distribution the load.

Acknowledgements

This work is supported by the National Natural Science

Foundation of China (Grant NO.61472139). The Professor

Chunhua Gu is the corresponding author of this paper.

References

[1] C. Devyaniba and T. Naimisha. “Cost effective selection of
Data center by Proximity-Based Routing Policy for Service
Brokering in Cloud Environment” International Journal of
Computer Technology & Applications, Vol 3 (6), 2057-2059.

[2] S. Ranjan Jena and Z. Ahmad, “Response time minimization of
different load balancing algorithms in cloud computing
environment”, IJCA, Volume-69, No-17, May 2013 edition.

[3] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. Pratap Singh
and R. Rastogi, “Load balancing of nodes in cloud using ant
colony optimization”, 2012, 14th International conference on
modeling and simulation.

[4] J. James and B. Verma, “Efficient VM load balancing
algorithm for a cloud computing environment”, International
Journal on Computer Science and Engineering (IJCSE), 2012.

[5] S. Ray and A. De Sarkar, “Execution analysis of load balancing
algorithms in cloud computing environment”, IJCCSA, Vol.2,
No.5, October 2012.

[6] A. Singh. N and M. Hemalatha, “An approach on semi
-distributed load balancing algorithm for cloud computing
system”, IJCA, Volume 56– No.12, October 2012.

[7] S. Sethi, A. Sahu and S. Kumar Jena, “Efficient load balancing
in cloud computing using Fuzzy logic”, IOSRJEN, ISSN:
2250-3021 Volume 2, Issue 7, 2012

[8] H. Mehta, P. Kanungo, and M. Chandwani, “Decentralized
content aware load balancing algorithm for distributed
computing environments”, Proceedings of the International
Conference Workshop on Emerging Trends in Technology
(ICWET), February 2011, pages 370-375.

[9] Y. Lua, Q. Xiea, G. Kliotb, A. Gellerb, J. R. Larusb and A.
Greenber, “Join-Idle-Queue: A novel load balancing algorithm
for dynamically scalable web services”, An international
Journal on Performance evaluation.

[10] J. Hu, J. Gu, G. Sun, and T. Zhao, A Scheduling Strategy on
Load Balancing of Virtual Machine Resources in Cloud
Computing Environ1144 International Journal of Scientific &
Engineering Research Volume 5, Issue 3, March-2014 ISSN
2229-5518.

[11] S. Wang, K. Yan, W. Liao, and S. Wang, “Towards a Load
Balancing in a Three-level Cloud Computing Network”,
Proceedings of the 3rd IEEE International Conference on
Computer Science and Information Technology (ICCSIT),
Chengdu, China, September 2010, pages 108-113.

[12] R. K. Mishra, S. Kumar, B. Sreenu Naik, Priority based
Round-Robin service broker algorithm for Cloud-Analyst
[C]//Advance Computing Conference (IACC), 2014 IEEE
International. IEEE, 2014: 878-881.

[13] L. Sheikhani, Y. Chang, C. Gu and F. Luo, "Modifying broker
policy for better response time in datacenters," 2017 3rd IEEE
International Conference on Computer and Communications
(ICCC), Chengdu, 2017, pp. 2459-2464.

[14] B. Wickremasinghe, R. Buyya, “CloudAnalyst: A
CloudSim-based tool for modelling and analysis of large scale
cloud computing environments,” MEDC project report, 22 (6),
2009, pp.433-659.

